[0072] Using this standardized, modular structure, numerous other variations of processors can be constructed easily and efficiently. For example, the processor shown in FIG. 6 comprises two chip packages, namely, chip package 602 comprising a BE and chip package 604 comprising four VSs. Input/output (I/O) 606 provides an interface between the BE of chip package 602 and network 104. Bus 608 provides communications between chip package 602 and chip package 604. Input output processor (IOP) 610 controls the flow of data into and out of I/O 606. I/O 606 may be fabricated as an application specific integrated circuit (ASIC). The output from the VSs is video signal 612.
[0073] FIG. 7 illustrates a chip package for a BE 702 with two optical interfaces 704 and 706 for providing ultra high speed communications to the other members of network 104 (or other chip packages locally connected). BE 702 can function as, e.g., a server on network 104.
[0074] The chip package of FIG. 8 comprises two PEs 802 and 804 and two VSs 806 and 808. An I/O 810 provides an interface between the chip package and network 104. The output from the chip package is a video signal. This configuration may function as, e.g., a graphics work station.
[0075] FIG. 9 illustrates yet another configuration. This configuration contains one-half of the processing power of the configuration illustrated in FIG. 8. Instead of two PEs, one PE 902 is provided, and instead of two VSs, one VS 904 is provided. I/O 906 has one-half the bandwidth of the I/O illustrated in FIG. 8. Such a processor also may function, however, as a graphics work station.
[0076] A final configuration is shown in FIG. 10. This processor consists of only a single VS 1002 and an I/O 1004. This configuration may function as, e.g., a PDA.