That's actually a good phishing scam. Reproduce the website, have some links, you'd probably get a lot of biters because the setup is so authentic looking.April fools?
I don’t know why they don’t just do it as www.pIaystation.com which would fool literally everyone until they click on it.
Ha! It was that PS5 link that you posted a month or two back that made me pay close attention to this web address.Then again I totally fell for it the last time. As we all remember. Idiot.
In short, the idea is that developers may learn to optimise in a different way, by achieving identical results from the GPU but doing it faster via increased clocks delivered by optimising for power consumption. "The CPU and GPU each have a power budget, of course the GPU power budget is the larger of the two," adds Cerny. "If the CPU doesn't use its power budget - for example, if it is capped at 3.5GHz - then the unused portion of the budget goes to the GPU. That's what AMD calls SmartShift. There's enough power that both CPU and GPU can potentially run at their limits of 3.5GHz and 2.23GHz, it isn't the case that the developer has to choose to run one of them slower."
"There's another phenomenon here, which is called 'race to idle'. Let's imagine we are running at 30Hz, and we're using 28 milliseconds out of our 33 millisecond budget, so the GPU is idle for five milliseconds. The power control logic will detect that low power is being consumed - after all, the GPU is not doing much for that five milliseconds - and conclude that the frequency should be increased. But that's a pointless bump in frequency," explains Mark Cerny.
At this point, the clocks may be faster, but the GPU has no work to do. Any frequency bump is totally pointless. "The net result is that the GPU doesn't do any more work, instead it processes its assigned work more quickly and then is idle for longer, just waiting for v-sync or the like. We use 'race to idle' to describe this pointless increase in a GPU's frequency," explains Cerny. "If you construct a variable frequency system, what you're going to see based on this phenomenon (and there's an equivalent on the CPU side) is that the frequencies are usually just pegged at the maximum! That's not meaningful, though; in order to make a meaningful statement about the GPU frequency, we need to find a location in the game where the GPU is fully utilized for 33.3 milliseconds out of a 33.3 millisecond frame.
"So, when I made the statement that the GPU will spend most of its time at or near its top frequency, that is with 'race to idle' taken out of the equation - we were looking at PlayStation 5 games in situations where the whole frame was being used productively. The same is true for the CPU, based on examination of situations where it has high utilisation throughout the frame, we have concluded that the CPU will spend most of its time at its peak frequency."
Put simply, with race to idle out of the equation and both CPU and GPU fully used, the boost clock system should still see both components running near to or at peak frequency most of the time. Cerny also stresses that power consumption and clock speeds don't have a linear relationship. Dropping frequency by 10 per cent reduces power consumption by around 27 per cent. "In general, a 10 per cent power reduction is just a few per cent reduction in frequency," Cerny emphasises.
It's an innovative approach, and while the engineering effort that went into it is likely significant, Mark Cerny sums it up succinctly: "One of our breakthroughs was finding a set of frequencies where the hotspot - meaning the thermal density of the CPU and the GPU - is the same. And that's what we've done. They're equivalently easy to cool or difficult to cool - whatever you want to call it."
There's likely more to discover about how boost will influence game design. Several developers speaking to Digital Foundry have stated that their current PS5 work sees them throttling back the CPU in order to ensure a sustained 2.23GHz clock on the graphics core. It makes perfect sense as most game engines right now are architected with the low performance Jaguar in mind - even a doubling of throughput (ie 60fps vs 30fps) would hardly tax PS5's Zen 2 cores. However, this doesn't sound like a boost solution, but rather performance profiles similar to what we've seen on Nintendo Switch. "Regarding locked profiles, we support those on our dev kits, it can be helpful not to have variable clocks when optimising. Released PS5 games always get boosted frequencies so that they can take advantage of the additional power," explains Cerny.
Regarding CPU - GPU clocks and power budget.
Edit: Most of what I've read is nothing new. I haven't read the audio part yet.
I felt the rest of the interview, the bits that you chopped out, really explained that quite well. Why run your processor at full speed if its not doing anything? I doubt the real meaning of developer comments that they're 'throttling back'. If they are creating workloads that aren't using the CPU fully, then the CPU will be clocked lower because it doesn't need to run higher. That's very different from the devs choosing to throttle back to free up power for the GPU, or finding when they try to put what they want on the CPU, the GPU slows down.So two key talking points on the CPU/GPU seems to be the same as before, questions around "most of the time":
"So, when I made the statement that the GPU will spend most of its time at or near its top frequency, that is with 'race to idle' taken out of the equation - we were looking at PlayStation 5 games in situations where the whole frame was being used productively. The same is true for the CPU, based on examination of situations where it has high utilisation throughout the frame, we have concluded that the CPU will spend most of its time at its peak frequency."
...
There's likely more to discover about how boost will influence game design. Several developers speaking to Digital Foundry have stated that their current PS5 work sees them throttling back the CPU in order to ensure a sustained 2.23GHz clock on the graphics core. It makes perfect sense as most game engines right now are architected with the low performance Jaguar in mind - even a doubling of throughput (ie 60fps vs 30fps) would hardly tax PS5's Zen 2 cores. However, this doesn't sound like a boost solution, but rather performance profiles similar to what we've seen on Nintendo Switch. "Regarding locked profiles, we support those on our dev kits, it can be helpful not to have variable clocks when optimising. Released PS5 games always get boosted frequencies so that they can take advantage of the additional power," explains Cerny.
So two key talking points on the CPU/GPU seems to be the same as before, questions around "most of the time":
"So, when I made the statement that the GPU will spend most of its time at or near its top frequency, that is with 'race to idle' taken out of the equation - we were looking at PlayStation 5 games in situations where the whole frame was being used productively. The same is true for the CPU, based on examination of situations where it has high utilisation throughout the frame, we have concluded that the CPU will spend most of its time at its peak frequency."
...
There's likely more to discover about how boost will influence game design. Several developers speaking to Digital Foundry have stated that their current PS5 work sees them throttling back the CPU in order to ensure a sustained 2.23GHz clock on the graphics core. It makes perfect sense as most game engines right now are architected with the low performance Jaguar in mind - even a doubling of throughput (ie 60fps vs 30fps) would hardly tax PS5's Zen 2 cores. However, this doesn't sound like a boost solution, but rather performance profiles similar to what we've seen on Nintendo Switch. "Regarding locked profiles, we support those on our dev kits, it can be helpful not to have variable clocks when optimising. Released PS5 games always get boosted frequencies so that they can take advantage of the additional power," explains Cerny.
And at the nuts and bolts level, there are still some lingering question marks. Both Sony and AMD have confirmed that PlayStation 5 uses a custom RDNA 2-based graphics core, but the recent DirectX 12 Ultimate reveal saw AMD confirm features that Sony has not, including variable rate shading.
"There's enough power that both CPU and GPU can potentially run at their limits of 3.5GHz and 2.23GHz, it isn't the case that the developer has to choose to run one of them slower."Yes unfortenately we know nothing more then before.
I felt the rest of the interview, the bits that you chopped out, really explained that quite well.
"There's enough power that both CPU and GPU can potentially run at their limits of 3.5GHz and 2.23GHz, it isn't the case that the developer has to choose to run one of them slower."
So, when I made the statement that the GPU will spend most of its time at or near its top frequency, that is with 'race to idle' taken out of the equation - we were looking at PlayStation 5 games in situations where the whole frame was being used productively. The same is true for the CPU, based on examination of situations where it has high utilisation throughout the frame, we have concluded that the CPU will spend most of its time at its peak frequency."
Cerny also stresses that power consumption and clock speeds don't have a linear relationship. Dropping frequency by 10 per cent reduces power consumption by around 27 per cent.
It's an innovative approach, and while the engineering effort that went into it is likely significant, Mark Cerny sums it up succinctly: "One of our breakthroughs was finding a set of frequencies where the hotspot - meaning the thermal density of the CPU and the GPU - is the same. And that's what we've done. They're equivalently easy to cool or difficult to cool - whatever you want to call it."
There's likely more to discover about how boost will influence game design. Several developers speaking to Digital Foundry have stated that their current PS5 work sees them throttling back the CPU in order to ensure a sustained 2.23GHz clock on the graphics core. It makes perfect sense as most game engines right now are architected with the low performance Jaguar in mind - even a doubling of throughput (ie 60fps vs 30fps) would hardly tax PS5's Zen 2 cores. However, this doesn't sound like a boost solution, but rather performance profiles similar to what we've seen on Nintendo Switch. "Regarding locked profiles, we support those on our dev kits, it can be helpful not to have variable clocks when optimising. Released PS5 games always get boosted frequencies so that they can take advantage of the additional power," explains Cerny.
"All of the game logic created for Jaguar CPUs works properly on Zen 2 CPUs, but the timing of execution of instructions can be substantially different," Mark Cerny tells us. "We worked to AMD to customise our particular Zen 2 cores; they have modes in which they can more closely approximate Jaguar timing. We're keeping that in our back pocket, so to speak, as we proceed with the backwards compatibility work."
GPUs process hundreds or even thousands of wavefronts; the Tempest engine supports two," explains Mark Cerny. "One wavefront is for the 3D audio and other system functionality, and one is for the game. Bandwidth-wise, the Tempest engine can use over 20GB/s, but we have to be a little careful because we don't want the audio to take a notch out of the graphics processing. If the audio processing uses too much bandwidth, that can have a deleterious effect if the graphics processing happens to want to saturate the system bandwidth at the same time."
As a result, with the GPU if you're getting 40 per cent VALU utilisation, you're doing pretty damn well. By contrast, with the Tempest engine and its asynchronous DMA model, the target is to achieve 100 percent VALU utilisation in key pieces of code."
"There's enough power that both CPU and GPU can potentially run at their limits of 3.5GHz and 2.23GHz, it isn't the case that the developer has to choose to run one of them slower."