As we have previously reported, the Summit supercomputer at Oak Ridge will pair two Power9 chips with six Volta GPU accelerators. Oak Ridge said that it would build Summit from around 4,600 nodes, up a bit from its previous estimate a few years back, and that each node would have 512 GB of main memory and 800 GB of flash memory. That’s 2.24 PB of main memory, 3.5 PB of flash memory, and nearly 72 GB of HBM2 memory across the cluster, which will be linked with 100 Gb/sec EDR InfiniBand. (The 200 Gb/sec HDR InfiniBand from Mellanox Technologies was not quite ready in time for the initial installations in July.) Those extra GPUs push the power envelope of the Summit machine up to around 13 megawatts, and they should deliver around 207 petaflops of peak theoretical performance (absent the Power9 floating point) at double precision. Oak Ridge had been planning for around 40 petaflops of performance per node, and it looks like it is getting 45 petaflops.
What we are hearing on the street is that IBM’s Witherspoon kicker to the Minksy/Garrison system will support either four or six Volta GPU accelerators and is being used in both the Summit and Sierra boxes, which makes sense if you want to amortize the $325 million cost of the two systems across a single architecture. If this is true, that means, in theory, that Lawrence Livermore will be able to boost its per node performance by 33 percent just by adding GPU accelerators to empty slots.