[0039] As noted above, while n CPUs (108, 110, . . . 112) are illustrated in FIG. 1, any number of CPUs can be included (including, for instance, only two CPUs). Further, additional CPUs can be devoted to performing host-related functions (that is, more than one CPU can be allocated to performing host-related functions). In one implementation, all of the CPUs (108, 110, . . . 112) are structured in the same manner. That is, all of the CPUs operate using an identical instruction set, but perform different functions based on the programs provided by the game developer. For example, a designer may prefer to design the CPU module 102 such that all of its CPUs have the same structure to facilitate testing of the CPU module 102, and later programming of the CPU module 102 by a game developer. However, in another implementation, the host CPU(s) can be designed to have a different architecture and functionality than the geometry-generating CPUs.
[0040] In one application, the system 100 can be configured to statically assign roles to the CPUs (108, 110, . . . 112), e.g., by assigning a CPU to the role of either a host CPU or a geometry-generating CPU. In another application, the system 100 can allocate these roles in a dynamic fashion, possibly on a frame by frame basis, or even many times within a frame (e.g., on an intra-frame basis). Thus, in one application, all of the CPUs (108, 110, . . . 112) can be assigned the role of handling host-related tasks. This might be appropriate in those cases where a programmer does not wish to make use of the special features provided by the geometry-generating CPUs 2 and n (110, . . . 112). In another case, the system 100 can assign the role of geometry-related processing to all of the CPUs (108, 110, . . . 112) for some portion of the frame time. In another case, as will be discussed below, the system can include two or more CPU modules 102. In this case, the system 100 can allocate the same role to all of the CPUs in one of the CPU modules 102 (such as geometry processing). In this scenario, it may be considered beneficial to locate the CPU module 102 assigned the role of host processing closest to a system memory 130 (because, in some environments, the host may be more negatively impacted by random access read misses than the geometry processing functionality, and therefore has more of a need for lower latency compared to the geometry processing functionality).